L’AI ha ridato vita alla nuova (rin)corsa al petrolio dei dati. L’entusiasmo generato dai media e l’enorme afflusso di capitali di rischio (oltre 4 miliardi di dollari investiti negli ultimi mesi) hanno innescato una gara serrata per ottenere un vantaggio competitivo nell’estrazione di dati (di qualità) e nell’uso dell’intelligenza artificiale.
Come con il petrolio, in cui la sfida non è stata tanto trovarlo, quanto saperlo raffinare e utilizzare per creare valore, ora succede con l’AI e con i dati. C’è un rischio reale in questa rincorsa che sta già iniziando a dare i primi segnali: muoversi con troppa fretta e ottimismo può portare a progetti di AI senza un effettivo ritorno, mentre un approccio troppo lento rischia di produrre soluzioni obsolete ancora prima di entrare in funzione.
L’obiettivo, per molte aziende, è trovare il giusto equilibrio, costruendo progetti che abbiano un impatto concreto e duraturo sul business, evitando di investire tempo e risorse in “pozzi a secco”.
Gli errori comuni nella creazione di progetti AI based
L’intelligenza artificiale non è più una mera curiosità sperimentale, ma una tecnologia matura che può rivoluzionare la progettazione, lo sviluppo e la distribuzione dei prodotti. Le aziende in grado di sfruttarla correttamente avranno senza dubbio aumento di produttività, riduzione dei costi e capacità finora impensabili in alcuni ambiti.
Per ottenere questi benefici, ed evitare i due errori comuni che ho visto già ripetutamente ripetersi, è necessario un livello di attenzione e progettazione su :
- Mancato allineamento con gli obiettivi aziendali: investire in AI solo perché “va di moda” conduce a progetti lunghi, costosi e privi di impatto concreto. Senza legare l’uso della tecnologia ad obiettivi di business chiari, si finisce per scavare in aree prive di petrolio di valore.
- Profili non adeguati: lasciare che un progetto sia gestito esclusivamente da team tecnici, senza coinvolgere business e prodotto, produce soluzioni che non rispondono alle reali esigenze dell’azienda, e del mercato. È come costruire un oleodotto senza sapere per quali mercati si sta estraendo.
Individuare il livello di maturità ed i casi d’uso con il framework D.E.E.P.
Negli anni ho imparato che non basta avere dati o tecnologie all’avanguardia per realizzare progetti di AI realmente efficaci. Il vero successo risiede nella capacità di individuare i giusti “campi di estrazione” e di definire chiaramente i criteri di impiego, evitando di farsi condizionare dal F.O.M.O. (Fear Of Missing Out) e puntando invece su un attento processo di analisi e assessment.
Partendo da queste esperienze, ho sviluppato gradualmente, in particolare nell’ultimo anno, un framework chiamato D.E.E.P. (Dati, Esperienza, Ecosistema, Processo). Applicato in diversi contesti industriali, questo approccio mi ha permesso di identificare il livello di maturità e le aree di intervento di un’organizzazione rispetto all’adozione dell’AI, riuscendo così a raffinare continuamente la metodologia. L’idea di “profondità” introdotta dal D.E.E.P. mira a valutare con precisione la situazione attuale dell’azienda e la sua capacità di generare valore attraverso l’AI, analizzando quattro dimensioni chiave, ciascuna con le sue analisi specifiche e i relativi output:
- Dati: in questa fase vengono valutati la disponibilità, la qualità, la strutturazione e la pulizia dei dati, conducendo un’analisi di data readiness che include l’inventario delle fonti, la valutazione delle lacune e la definizione di eventuali interventi di miglioramento. L’output finale è un quadro chiaro del patrimonio informativo disponibile, con indicazioni su come preparare i dati per l’addestramento di modelli IA.
- Esperienza: qui si verifica la presenza di esperti di dominio, la profondità della conoscenza interna e la capacità di interpretare correttamente le problematiche da risolvere con l’AI. L’analisi comprende l’identificazione degli stakeholder chiave, la mappatura delle competenze e la valutazione delle lacune conoscitive. L’output consiste in un piano per coinvolgere le figure di riferimento, colmare eventuali gap di expertise e facilitare il trasferimento di conoscenza ai modelli di intelligenza artificiale.
- Ecosistema: in questa fase viene esaminata l’infrastruttura tecnologica, organizzativa e culturale dell’azienda: l’integrazione tra strumenti, piattaforme, team e processi esistenti viene valutata attraverso un’analisi di compatibilità e scalabilità. L’output è un documento di raccomandazioni su come allineare o aggiornare l’ecosistema tecnologico, indicazioni su eventuali cambi di tool, su come integrare l’AI nei flussi di lavoro esistenti e su come preparare l’organizzazione ad accogliere nuove soluzioni.
- Processo: infine, vengono analizzati i workflow operativi, la loro ripetibilità, standardizzazione e documentazione. Attraverso un assessment dei processi, si individuano le attività a maggior potenziale di automazione o ottimizzazione tramite AI. L’output di questa fase è una mappa dei flussi di lavoro prioritari, con indicazioni su dove introdurre l’IA e suggerimenti per la modellazione del processo, al fine di massimizzare l’efficacia dell’intervento tecnologico.
L’insieme di queste analisi e output fornisce così una visione integrata dello stato di maturità dell’azienda e orienta i passi successivi verso l’implementazione di soluzioni IA solide, mirate e sostenibili.
Un esempio, banale, ma concettualmente efficace: un’azienda retail che vuole generare report accurati sulle tendenze di vendita partendo da un insieme di flussi di dati prevalentemente digitali ma integrato di dati cartacei disordinati, note interne non standardizzate e appunti informali sul comportamento dei clienti. Senza informazioni strutturate e digitalizzate (Dati), senza uno staff che abbia codificato a fondo la logica commerciale o le metriche critiche da monitorare (Esperienza), senza strumenti integrati per gestire e processare le informazioni (Ecosistema), né procedure ripetibili per l’analisi delle vendite (Processo), l’uso dell’AI diventa evidentemente inefficace. È come cercare di “estrarre valore” in un contesto caotico, senza i fondamenti necessari per ottenere risultati significativi.
Dopo il DEEP, l’analisi delle 4V per definire le priorità
Una volta individuati eventuali gap, maturità, i potenziali “giacimenti” e gli ambiti di intervento grazie a D.E.E.P., occorre ora valutarne il potenziale, così da permettere all’azienda di comprendere, senza illusioni o aspettative non correttamente tarate.
A questo scopo, utilizzo un modello che ho rivisto di un framework chiamato V.V.V. a cui ho aggiunto una quarta dimensione e trasformandolo in V.V.V.V. (Valutazione, Valore, Velocità, Visione):
1. Valutazione
- Scopo:verificare la fattibilità reale del progetto, considerando competenze, risorse e contesto normativo, così da identificare gli ostacoli e le soluzioni necessarie prima di investire ulteriormente.
- Analisi: in questa fase si mappano i gap di skill interne, si valutano i fornitori o partner potenziali, si considerano i requisiti legali e i vincoli tecnici. Questo passaggio serve anche a definire se conviene formare il personale interno, assumere nuovi talenti, acquisire tecnologie o esternalizzare parte dell’iniziativa.
- Azioni: la conclusione della “Valutazione” è un piano operativo che evidenzia investimenti da effettuare, competenze da integrare (make or buy), modalità di coinvolgimento dei partner esterni e interventi per ridurre i rischi e aumentare la sostenibilità del progetto.
2. Valore:
- Scopo: stabilire la reale utilità dell’iniziativa in termini di impatto su costi, ricavi, efficienza e vantaggio competitivo. L’obiettivo è comprendere se l’investimento genererà risultati tangibili, evitando di puntare su soluzioni prive di ritorno.
- Analisi: si identificano i KPIs rilevanti, si stimano i potenziali incrementi di produttività o risparmi di tempo, si analizzano le opportunità di crescita dei ricavi e si verifica se il progetto supporta gli obiettivi strategici dell’azienda.
- Azioni: a valle di questa fase, l’azienda ottiene una chiara definizione del ritorno sull’investimento (ROI) atteso, una mappa dei benefici misurabili e una lista di priorità per focalizzarsi sulle iniziative a maggiore impatto, orientando così le risorse dove offrono più valore.
3. Velocità
- Scopo: valutare i tempi e le modalità di implementazione per garantire che il progetto non diventi obsoleto prima di essere completato. In un contesto di rapida evoluzione tecnologica, come quella che viviamo oggi, è essenziale agire con tempismo e definire release incrementali.
- Analisi: si esamina la complessità delle attività, la disponibilità delle risorse, la presenza di eventuali colli di bottiglia, e si definiscono milestone e roadmap temporali. Ciò consente di capire se è meglio avviare subito il progetto o se attendere migliori condizioni.
- Azioni: Il risultato è un piano di roll-out agile, con rilasci progressivi, test intermedî e la capacità di reagire rapidamente ai cambiamenti del mercato e alle nuove tecnologie, prevenendo un eccessivo allungamento dei tempi e inutili sprechi di risorse.
4. Visione:
- Scopo: garantire che l’iniziativa non sia solo un’opportunità tattica ma anche strategica, inserita in una prospettiva di medio-lungo termine e allineata ai trend futuri del settore e alle evoluzioni interne all’azienda.
- Analisi: si verifica la coerenza del progetto con la strategia complessiva, si valuta la capacità di scalare la soluzione nel tempo, di adattarsi a nuove esigenze o mercati, di integrarsi con altri progetti in pipeline e di sfruttare tecnologie emergenti.
- Azioni: una volta conclusa l’analisi sulla Visione, l’azienda dispone di una roadmap di lungo periodo e di linee guida per far crescere o adattare l’iniziativa nel futuro, assicurando che l’investimento si riveli un asset duraturo e non una soluzione effimera.
L’integrazione di queste quattro dimensioni (Valutazione, Valore, Velocità, Visione) consente all’azienda di definire un quadro completo delle opportunità e dei rischi, assicurando interventi mirati, sostenibili e coerenti con il contesto presente e futuro. L’integrazione della componente Visione introduce a mio avviso una valutazione di lungo termine così da dare una prospettiva che permetta, nelle valutazioni progressive, di capire se la direzione è coerente e se attuale rispetto al contesto. In particolare questo punto di valutazione è utile quando il progetto non restituirà immediatamente risultati creando una condizione di sfiducia e quindi possibili decisioni non più coerenti con le valutazioni iniziali.
Utilizzando i due framework D.E.E.P. e 4V., si individuano a questo punto uno o due casi d’uso veramente promettenti, interessanti non solo per una area aziendale, che sia il business, l’applicabilità tecnica o la notiziabilità, e si definisce un piano trasversale che coinvolge l’azienda in una trasformazione spinta dall’AI e pronta per essere messa in produzione senza sprechi di risorse e in un’ottica di crescita sostenibile.
Linee guida chiave:
- Coinvolgere più competenze: servono persone e competenze che conoscano sia la tecnologia sia il mercato, per assicurarsi che l’AI estragga il giusto tipo di “petrolio” e non sabbia.
- Cambiare i processi di sviluppo: le metodologie tradizionali non si adattano perfettamente ai progetti trainati da AI. Occorre rilasciare prototipi, testare sul campo, iterare. È come calibrare un nuovo impianto di raffinazione fino a trovare l’ottimale. Bisogna introdurre una mentalità iterativa, orientata alla raffinazione degli errori e non al giudizio sul fallimento.
- Procedere per piccoli passi: iniziare con progetti circoscritti e ad alto impatto, per minimizzare i rischi e imparare dall’esperienza, è meglio che cercare di trivellare subito in profondità senza la giusta preparazione, una giusta motivazione e una corretta sostenibilità.
Finisco il concetto continuando sulla metafora del petrolio: muoversi senza criterio sull’onda dell’hype porta a pozzi a secco e risorse sprecate. Agire troppo lentamente significa concedere il vantaggio e perdere in competitività. La chiave è trovare l’equilibrio, individuare i giacimenti di dati giusti, usare il metodo DEEP per capire come estrarli ed un modello come il 4V per prioritizzare ciò che può davvero generare valore per il business. In questo modo l’AI diventa il vero “petrolio” dell’era digitale, una risorsa su cui costruire un vantaggio competitivo duraturo.